Ferroelastic phase transition inCs3Bi2I9: A neutron diffraction study

Abstract
Crystalline Cs3Bi2I9, with the P63/mmc symmetry at room temperature was studied by Laue and four-circle neutron diffractometry from room temperature down to 50 K. At T0=220K the crystal undergoes a second-order proper ferroelastic phase transition to a polydomain structure with a nonprimitive monoclinic C12/m1 space group. Satellites were not found below T0, indicating that the continuous distribution of sites observed in previous 127I nuclear quadrupole resonance experiments is due either to an undetected incommensurate phase characterized by a very small displacement amplitude, or due to the fraction of the crystal volume occupied by domain walls. We argue that thick domain walls are expected in the present structure due to the absence of mechanical compatibility between domains.

This publication has 11 references indexed in Scilit: