Human liver mitochondrial carnitine palmitoyltransferase I: characterization of its cDNA and chromosomal localization and partial analysis of the gene.

Abstract
Using the cDNA for rat liver mitochondrial carnitine palmitoyltransferase I (CPT I; EC 2.3.1.21) as a probe, we isolated its counterpart as three overlapping clones from a human liver cDNA library. Both the nucleotide sequence of the human cDNA and the predicted primary structure of the protein (773 aa) proved to be very similar to those of the rat enzyme (82% and 88% identity, respectively). The CPT I mRNA size was also found to be the same (approximately 4.7 kb) in both species. Screening of a human genomic library with the newly obtained cDNA yielded a positive clone of approximately 6.5 kb which, upon partial analysis, was found to contain at least two complete exons linked by a 2.3-kb intron. Oligonucleotide primers specific to upstream and downstream regions of one of the exon/intron junctions were tested in PCRs with DNA from a panel of somatic cell hybrids, each containing a single human chromosome. The results allowed unambiguous assignment of the human liver CPT I gene to the q (long) arm of chromosome 11. Additional experiments established that liver and fibroblasts express the same isoform of mitochondrial CPT I, legitimizing the use of fibroblast assays in the differential diagnosis of the "muscle" and "hepatic" forms of CPT deficiency. The data provide insights into the structure of a human CPT I isoform and its corresponding gene and establish unequivocally that CPT I and CPT II are distinct gene products. Availability of the human CPT I cDNA should open the way to an understanding of the genetic basis of inherited CPT I deficiency syndromes, how the liver CPT I gene is regulated, and which tissues other than liver express this particular variant of the enzyme.