A Matheematical Model for Positron-Emission Tomography Systems Having Time-of-Flight Measurements

Abstract
Improvements in high speed electronics and scintillation-crystal technology now permit usable differential time-of-flight measurements to be made in tomography systems that employ coincidence detection of the annihilation photons created with positron emitting radionuclides. A mathematical model for these new measurements is developed in this paper. Reconstruction algorithms and their signal-to-noise ratio performance are given.