Passive sodium movements across the opercular epithelium: The paracellular shunt pathway and ionic conductance

Abstract
The unidirectional Na+, Cl, and urea fluxes across isolated opercular epithelia from seawater-adaptedFundulus heteroclitus were measured under different experimental conditions. The mean Na+, Cl, and urea permeabilities were 9.30×10−6 cm·sec−1, 1.24×10−6 cm·sec−1, and 5.05×10−7 cm·sec−1, respectively. The responses of the unidirectional Na+ fluxes and the Cl influx (mucosa to serosa) to voltage clamping were characteristic of passively moving ions traversing only one rate-limiting barrier. The Na+ conductance varied linearly with, and comprised a mean 54% of, the total tissue ionic conductance. The Cl influx and the urea fluxes were independent of the tissue conductance. Triaminopyrimidine (TAP) reduced the Na+ fluxes and tissue conductance over 70%, while having no effect on the Cl influx or urea fluxes. Mucosal Na+ substitution reduced the Na+ permeability 60% and the tissue conductance 76%, but had no effect on the Cl influx or the urea fluxes. Both the Na+ and Cl influxes were unaffected by respective serosal substitutions, indicating the lack of any Na+/Na+ and Cl/Cl exchange diffusion. The results suggest that the unidirectional Na+ fluxes are simple passive fluxes proceeding extracellularly (i.e., movement through a cation-selective paracellular shunt). This pathway is dependent on mucosal (external) Na+, independent of serosal (internal) Na+, and may be distinct from the transepithelial Cl and urea pathways.