A molecular marker to select for freezing tolerance in Gramineae

Abstract
Summary We isolated, and expressed in Escherichia coli, a gene (Wcs120) that is strongly induced during cold acclimation of wheat. The gene product was purified and used to produce antibodies. Immunoblotting experiments with the anti-WCS120 antibody identified several cold-induced proteins named FTMs for Freezing Tolerance Markers since they are associated with the development of freezing tolerance. This protein family was found to be coordinately regulated specifically by low temperature, highly hydrophilic, stable to boiling, and to have a pI above 6.5. The accumulation kinetics during the acclimation period indicated a positive correlation with the capacity of each genotype to develop freezing tolerance. Accumulation of the proteins was higher in the freezing-tolerant genotype than in the less tolerant one. In addition, their accumulation was more pronounced in the crown and leaf tissues compared with roots, confirming a relationship to the capacity of the different tissues to develop freezing tolerance. Analysis of different species (eight monocots and four dicots) indicated that this protein family is specific for freezing-tolerant cereals. The antibody did not cross-react with any of the non-cereal species examined. The anti-FTMs antibody represents a potential tool for breeders to select for freezing tolerance traits in the Gramineae.