In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography

Top Cited Papers
Open Access
Abstract
An ultra-high-speed spectral domain optical Doppler tomography (SD-ODT) system is used to acquire images of blood flow in a human retina in vivo, at 29,000 depth profiles (A-lines) per second and with data acquisition over 99% of the measurement time. The phase stability of the system is examined and image processing algorithms are presented that allow accurate determination of bi-directional Doppler shifts. Movies are presented of human retinal flow acquired at 29 frames per second with 1000 A-lines per frame over a time period of 3.28 seconds, showing accurate determination of vessel boundaries and time-dependent bi-directional flow dynamics in artery-vein pairs. The ultra-high-speed SD-ODT system allows visualization of the pulsatile nature of retinal blood flow, detects blood flow within the choroid and retinal capillaries, and provides information on the cardiac cycle. In summary, accurate video rate imaging of retinal blood flow dynamics is demonstrated at ocular exposure levels below 600 µW.