A linkage map of Atlantic salmon (Salmo salar) reveals an uncommonly large difference in recombination rate between the sexes

Abstract
A genetic linkage map of the Atlantic salmon (Salmo salar) was constructed, using 54 microsatellites and 473 amplified fragment length polymorphism (AFLP) markers. The mapping population consisted of two full-sib families within one paternal half-sib family from the Norwegian breeding population. A mapping strategy was developed that facilitated the construction of separate male and female maps, while retaining all the information contributed by the dominant AFLP markers. By using this strategy, we were able to map a significant number of the AFLP markers for which all informative offspring had two heterozygous parents; these markers then served as bridges between the male and female maps. The female map spanned 901 cM and had 33 linkage groups, while the male spanned 103 cM and had 31 linkage groups. Twenty-five linkage groups were common between the two maps. The construction of the genetic map revealed a large difference in recombination rate between females and males. The ratio of female recombination rate vs. male recombination rate was 8.26, the highest ratio reported for any vertebrate. This map constitutes the first linkage map of Atlantic salmon, one of the most important aquaculture species worldwide.