Analogy Between Conventional Grid Control and Islanded Microgrid Control Based on a Global DC-Link Voltage Droop
- 16 May 2012
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Power Delivery
- Vol. 27 (3), 1405-1414
- https://doi.org/10.1109/tpwrd.2012.2193904
Abstract
For islanded microgrids, droop-based control methods are often used to achieve a reliable energy supply. However, in case of resistive microgrids, these control strategies can be rather different to what conventional grid control is accustomed to. Therefore, in this paper, the theoretical analogy between conventional grid control by means of synchronous generators (SGs) and the control of converter-interfaced distributed generation (CIDG) units in microgrids is studied. The conventional grid control is based on the frequency as a global parameter showing differences between mechanical power and ac power. The SGs act on changes of frequency through their P/f droop controller, without interunit communication. For CIDG units, a difference between dc-side power and ac-side power is visible in the dc-link voltage of each unit. Opposed to grid frequency, this is not a global parameter. Thus, in order to make a theoretical analogy, a global measure of the dc-link voltages is required. A control strategy based on this global voltage is presented and the analogy with the conventional grid control is studied, with the emphasis on the need for interunit communication to achieve this analogy. A known control strategy in resistive microgrids, called the voltage-based droop control for CIDG units, approximates this analogy closely, but avoids interunit communication. Therefore, this control strategy is straightforward for implementation since it is close to what control engineers are used to. Also, it has some specific advantages for the integration of renewables in the network.Keywords
This publication has 25 references indexed in Scilit:
- A Control Strategy for Islanded Microgrids With DC-Link Voltage ControlIEEE Transactions on Power Delivery, 2011
- Active Load Control in Islanded Microgrids Based on the Grid VoltageIEEE Transactions on Smart Grid, 2010
- Virtual Impedance Loop for Droop-Controlled Single-Phase Parallel Inverters Using a Second-Order General-Integrator SchemeIEEE Transactions on Power Electronics, 2010
- Design and Analysis of the Droop Control Method for Parallel Inverters Considering the Impact of the Complex Impedance on the Power SharingIEEE Transactions on Industrial Electronics, 2010
- Decentralized Control for Parallel Operation of Distributed Generation Inverters Using Resistive Output ImpedanceIEEE Transactions on Industrial Electronics, 2007
- Wireless-Control Strategy for Parallel Operation of Distributed-Generation InvertersIEEE Transactions on Industrial Electronics, 2006
- Defining Control Strategies for MicroGrids Islanded OperationIEEE Transactions on Power Systems, 2006
- Voltage and frequency control of inverter based weak LV network microgridPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2005
- Control of Distributed Generation Systems— Part II: Load Sharing ControlIEEE Transactions on Power Electronics, 2004
- Control of parallel inverters in distributed AC power systems with consideration of line impedance effectIEEE Transactions on Industry Applications, 2000