An experimental investigation of natural convection in the melted region around a heated horizontal cylinder

Abstract
Melting from an electrically heated horizontal cylinder embedded in a paraffin (n-octadecane, fusion temperature 301·3 °K) has been studied experimentally. The shape of the solid-liquid interface has been determined photographically, and the local heat transfer coefficients have been measured using a shadowgraph technique. The experiments provide conclusive evidence of the important role played by natural convection in melting a solid due to an embedded cylindrical heat source. The four distinct pieces of quantitative evidence which contribute to this conclusion are the melt shape, surface temperature, local and average heat transfer coefficients and their variation with time.The experimental findings prove the importance of natural convection in phase change problems involving melting and indicate that continued practice of neglecting the effects in the analysis of such problems does not appear reasonable. Natural convection should be considered in analysis and design of systems involving phase change.