Surface patterns on single-crystal films under uniaxial stress: Experimental evidence for the Grinfeld instability

Abstract
We study the stress relaxation in single-crystal films of polymerized polydiacetylene, in epitaxy with their monomer substrate. Polymerization induces a uniaxial stress. Two types of surface patterns are observed and studied by atomic force microscopy: films thicker than 175 nm exhibit quasiperiodic cracks perpendicular to the polymer chains; thinner ones exhibit regular wrinkles with the same orientation. The wrinkle surface deformation is stress relaxing and plastic. We show that all experimental results, in particular, the order of magnitude of the pattern spacings, are compatible with the following interpretation: as polymerization proceeds, the uniaxial stress generates a Grinfeld instability (Dok. Akad. Nauk SSSR 290, 1358 (1986) [Sov. Phys. Dokl. 31, 831 (1986)]) fed by surface diffusion. The crack pattern is a secondary instability, initiated at the sites of stress concentration provided by the wrinkles.