Models to interpret kinetic data in stable isotope tracer studies

Abstract
In contrast to "weightless" radioactive tracers, stable isotope tracers have nonnegligible mass and are naturally present in the system, and the measured variable is a ratio of two isotopic species. These features do not allow stable isotopic tracer data analysis using straightforward analogy with radioactive tracer approaches, even though this practice is common. In this study, we present kinetic variables, models, and measurements for the analysis and interpretation of stable isotope tracer data. Assumptions and mathematical techniques for modeling the data when perturbation is both nonnegligible and negligible are discussed. Emphasis is placed on the rich information content of the dynamic portion of a stable isotope tracer curve and on the role of compartmental and noncompartmental modeling approaches for its interpretation. A presumed and commonly used analogy between the radioactive specific activity and stable isotopic enrichment is shown to be incorrect. We show that the proper analogue of specific activity is the tracer-to-tracee molar ratio. This variable is not a directly measurable one, but a formula is derived that allows its computation from the data. A method for reconstructing the time course in blood of the concentration component due to endogenous synthesis is presented. This allows measurement of the extent of the perturbation in the case where a nonweightless tracer is used. Special attention is given to data analysis originating from a multiple tracer experiment, a configuration necessary for studying more complex systems, e.g., the kinetics of interacting substrates.