Thermally induced self-locking of an optical cavity by overtone absorption in acetylene gas

Abstract
Strong self-locking phenomena are observed when laser power is converted into heat by a weakly absorbing medium within a high-finesse cavity. Deposited heat leads to increased temperature and, for the case of weakly absorbing intracavity gases studied here, to an associated reduction of density and refractive index. This thermal change in refractive index provides self-acting cavity tuning near resonant conditions. In the experiments reported here a Fabry–Perot cavity of finesse 274 was filled with acetylene gas and illuminated with a titanium:sapphire laser tuned to the P(11) line of the ν1 + 3ν3 overtone band near 790 nm. The dependencies of maximum frequency-locking range on gas pressure, laser power, and laser frequency sweep rate and direction were measured and could be well unified by analysis based on the thermal model. In the domain of strong self-tuning an interesting self-sustained oscillation was observed, with its several sharp frequencies directly and quantitatively linked to the acoustic boundary conditions in our cylindrical cell geometry. The differences between the behavior of acetylene near 790 nm and molecular oxygen with electronic transition near 763 nm are instructive; whereas the absorbed powers were similar, they differed strongly in their rates for internal to translational energy conversion by collisional relaxation.