Stereoselective cyclooxygenase inhibition in cellular models by the enantiomers of ketoprofen

Abstract
The pharmacological activity of rac-ketoprofen and its enantiomers was investigated in vitro using different cellular models. The effect of these compounds on arachidonic acid metabolism was assessed by measuring the inhibition of prostanoid generation under the action of several agonists. Thus, we have evaluated the inhibition of (1) thromboxane B2 synthesis in rabbit platelets and human polymorphonuclear leukocytes (PMNs), (2) prostaglandin E2 synthesis in three cultured cells, namely human umbilical vein endothelial cells (HUVEC), human keratinocytes, and mouse macrophage-like P388D1 cells. The IC50 values found for (+)-(S)-ketoprofen were in the range between 0.1 nM and 0.8 μM, being slightly lower in all models than those found for rac-ketoprofen (0.4 nM–3 μM). On the other hand, (−)-(R)-ketoprofen showed inhibition of cyclooxygenase only at concentrations two or three orders of magnitude higher than those required for the (+)-(S) enantiomer. These results, obtained with cell types of relevance for inflammatory processes and with compounds of high optical purity, demonstrate that the prostanoid biosynthesis inhibition caused by the drug rac-ketoprofen is exclusively due to its dextrorotatory enantiomer.