Discovery of antiandrogen activity of nonsteroidal scaffolds of marketed drugs
Open Access
- 17 July 2007
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 104 (29), 11927-11932
- https://doi.org/10.1073/pnas.0609752104
Abstract
Finding good drug leads de novo from large chemical libraries, real or virtual, is not an easy task. High-throughput screening is often plagued by low hit rates and many leads that are toxic or exhibit poor bioavailability. Exploiting the secondary activity of marketed drugs, on the other hand, may help in generating drug leads that can be optimized for the observed side-effect target, while maintaining acceptable bioavailability and toxicity profiles. Here, we describe an efficient computational methodology to discover leads to a protein target from safe marketed drugs. We applied an in silico “drug repurposing” procedure for identification of nonsteroidal antagonists against the human androgen receptor (AR), using multiple predicted models of an antagonist-bound receptor. The library of marketed oral drugs was then docked into the best-performing models, and the 11 selected compounds with the highest docking score were tested in vitro for AR binding and antagonism of dihydrotestosterone-induced AR transactivation. The phenothiazine derivatives acetophenazine, fluphenazine, and periciazine, used clinically as antipsychotic drugs, were identified as weak AR antagonists. This in vitro biological activity correlated well with endocrine side effects observed in individuals taking these medications. Further computational optimization of phenothiazines, combined with in vitro screening, led to the identification of a nonsteroidal antiandrogen with improved AR antagonism and marked reduction in affinity for dopaminergic and serotonergic receptors that are the primary target of phenothiazine antipsychotics.Keywords
This publication has 52 references indexed in Scilit:
- Structural Basis for Accommodation of Nonsteroidal Ligands in the Androgen ReceptorJournal of Biological Chemistry, 2005
- Antiandrogens prevent stable DNA-binding of the androgen receptorJournal of Cell Science, 2005
- Structural basis for antagonism and resistance of bicalutamide in prostate cancerProceedings of the National Academy of Sciences, 2005
- The Molecular Mechanisms of Coactivator Utilization in Ligand-dependent Transactivation by the Androgen ReceptorJournal of Biological Chemistry, 2005
- Virtual screening of chemical librariesNature, 2004
- Recognition and Accommodation at the Androgen Receptor Coactivator Binding InterfacePLoS Biology, 2004
- Protein Flexibility in Ligand Docking and Virtual Screening to Protein KinasesJournal of Molecular Biology, 2004
- Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acidNature, 1995
- Biased Probability Monte Carlo Conformational Searches and Electrostatic Calculations for Peptides and ProteinsJournal of Molecular Biology, 1994
- A mutation in the ligand binding domain of the androgen receptor of human INCaP cells affects steroid binding characteristics and response to anti-androgensBiochemical and Biophysical Research Communications, 1990