Improving Tumor-Targeting Capability and Pharmacokinetics of 99mTc-Labeled Cyclic RGD Dimers with PEG4 Linkers

Abstract
This report describes the synthesis of two cyclic RGD (Arg-Gly-Asp) conjugates, HYNIC-2PEG4-dimer (HYNIC = 6-hydrazinonicotinyl; 2PEG4-dimer = E[PEG4-c(RGDfK)]2; and PEG4 = 15-amino-4,7,10,13-tetraoxapentadecanoic acid) and HYNIC-3PEG4-dimer (3PEG4-dimer = PEG4-E[PEG4-c(RGDfK)]2), and evaluation of their 99mTc complexes [99mTc(HYNIC-2PEG4-dimer)(tricine)(TPPTS)] (99mTc-2PEG4-dimer: TPPTS = trisodium triphenylphosphine-3,3′,3′′-trisulfonate) and [99mTc(HYNIC-3PEG4-dimer)(tricine)(TPPTS)] (99mTc-3PEG4-dimer) as novel radiotracers for imaging integrin αvβ3 expression in athymic nude mice bearing U87MG glioma and MDA-MB-435 breast cancer xenografts. The integrin αvβ3 binding affinities of RGD peptides were determined by competitive displacement of 125I-c(RGDyK) on U87MG glioma cells. It was found that the two PEG4 linkers between RGD motifs in HYNIC-2PEG4-dimer (IC50 = 2.8 ± 0.5 nM) and HYNIC-3PEG4-dimer (IC50 = 2.4 ± 0.7 nM) are responsible for their higher integrin αvβ3 binding affinity than that of HYNIC-PEG4-dimer (PEG4-dimer = PEG4-E[c(RGDfK)]2; IC50 = 7.5 ± 2.3 nM). Addition of extra PEG4 linker in HYNIC-3PEG4-dimer has little impact on integrin αvβ3 binding affinity. 99mTc-2PEG4-dimer and 99mTc-3PEG4-dimer were prepared in high yield with >95% radiochemical purity and the specific activity of >10 Ci/μmol. Biodistribution studies clearly demonstrated that PEG4 linkers are particularly useful for improving the tumor uptake and clearance kinetics of 99mTc-2PEG4-dimer and 99mTc-3PEG4-dimer from noncancerous organs. It was also found that there was a linear relationship between the tumor size and radiotracer tumor uptake expressed as %ID (percentage of the injected dose) in U87MG glioma and MDA-MB-435 breast tumor models. The blocking experiment showed that the tumor uptake of 99mTc-2PEG4-dimer is integrin αvβ3-mediated. In the metabolism study, 99mTc-2PEG4-dimer had high metabolic stability during its excretion from renal and hepatobiliary routes. 99mTc-3PEG4-dimer also remained intact during thee excretion from the renal route, but, had ∼30% metabolism during the excretion from the hepatobiliary route. Planar imaging studies in U87MG glioma and MDA-MB-435 breast tumor models showed that the tumors of ∼5 mm in diameter could be readily visualized with excellent contrast. Thus, 99mTc-3PEG4-dimer is a very promising radiotracer for the early detection of integrin αvβ3-positive tumors, and may have the potential for noninvasive monitoring of tumor growth or treatment efficacy.