Impact of Hierarchical Memory Systems On Linear Algebra Algorithm Design

Abstract
Linear algebra algorithms based on the BLAS or ex tended BLAS do not achieve high performance on mul tivector processors with a hierarchical memory system because of a lack of data locality. For such machines, block linear algebra algorithms must be implemented in terms of matrix-matrix primitives (BLAS3). Designing ef ficient linear algebra algorithms for these architectures requires analysis of the behavior of the matrix-matrix primitives and the resulting block algorithms as a func tion of certain system parameters. The analysis must identify the limits of performance improvement possible via blocking and any contradictory trends that require trade-off consideration. We propose a methodology that facilitates such an analysis and use it to analyze the per formance of the BLAS3 primitives used in block methods. A similar analysis of the block size-perfor mance relationship is also performed at the algorithm level for block versions of the LU decomposition and the Gram-Schmidt orthogonalization procedures.

This publication has 7 references indexed in Scilit: