Abstract
The kinetic characteristics of the opening and closing of the excitability-inducing material (EIM) channel in oxidized cholesterol and in brain lipid bilayers are compared. The kinetics of the opening and closing of individual ion-conducting channels in bilayers doped with small amounts of EIM are determined from discrete fluctuations in ionic current. The kinetics for approach to steady-state conductance are determined for lipid bilayers containing many channels. Steady-state and kinetic characteristics for the EIM channel incorporated in brain lipid bilayers can be accounted for by the model developed for the EIM channel incorporated in oxidized cholesterol membranes. Relaxation time, calculated from rate constants of single-channel membranes or directly measured in many-channel membranes is strongly temperature dependent, and is always shorter in brain lipid membranes. Changes in temperature do not affect the interaction of the electric field and the open channel, but the open configuration of the EIM channel in brain lipid bilayers is stablized with increasing temperature. The configurational energy difference between the open and closed channel, calculated from temperature studies, is larger in brain lipid bilayers. The energy barrier which separates the two configurations of the channel is larger in oxidized cholesterol bilayers.