Spacecraft Vibration Reduction Using Pulse-Width Pulse-Frequency Modulated Input Shaper

Abstract
The article of record as published may be found at http://dx.doi.org/10.2514/2.4415Minimizing vibrations of a flexible spacecraft actuated by on-off thrusters is a challenging task. This paper presents the first study of Pulse-Width Pulse-Frequency (PWPF) modulated thruster control using command input shaping. Input shaping is a technique which uses shaped command to ensure zero residual vibration of a flexible structure. PWPF modulation is a control method which provides pseudo-linear operation for an on-off thruster. The proposed method takes full advantage of the pseudo-linear property of a PWPF modulator and integrates it with a command shaper to minimize the vibration of a flexible spacecraft induced by on-off thruster firing. Compared to other methods, this new approach has numerous advantages: 1) effectiveness in vibration suppression, 2) dependence only on modal frequency and damping, 3) robustness to variations in modal frequency and damping, 4) easy computation and 5) simple implementation. Numerical simulations performed on an eight-mode model of the Flexible Spacecraft Simulator (FSS) in the Spacecraft Research and Design Center (SRDC) at US Naval Postgraduate School (NPS) demonstrate the efficacy and robustness of the method

This publication has 7 references indexed in Scilit: