Abstract
Re-analysis of the primary structure of the ribosomal RNA N-methyltransferase that confers self-resistance on the erythromycin-producing bacterium Saccharopolyspora erythraea has confirmed the presence of a C-terminal domain containing extensive repeat sequences. Nine tandem repeats can be discerned, with a decapeptide consensus sequence GGRx(H/R)GDRRT, although no single residue is wholly invariant. This highly polar, potentially flexible domain, which is predicted to adopt either a random coil or a structure with β turns, has a counterpart in the erythromycin methyltransferase of an erythromycin-producing species of Arthrobacter. It also significantly resembles a portion of the C-tenninal region of the eukaryotic protein nucleolin, which is unusually rich in dimethylarginine and glycine, and which is also predicted to behave as a random coil in solution. This resemblance, despite the very different roles of these proteins in ribosome biogenesis, strengthens the idea that in both rRNA methyltransferases and nucleolin these C-tenninal sequences might contribute to rRNA binding.