Hydrodynamics-based delivery of the viral interleukin-10 gene suppresses experimental crescentic glomerulonephritis in Wistar–Kyoto rats

Abstract
Gene therapy is expected to revolutionize the treatment of kidney diseases. Viral interleukin (vIL)-10 has a variety of immunomodulatory properties. We examined the applicability of vIL-10 gene transfer to the treatment of rats with crescentic glomerulonephritis, a T helper 1 (Th 1) predominant disease. To produce the disease, Wistar–Kyoto rats were injected with a rabbit polyclonal anti-rat glomerular basement membrane antibody. After 3 h, a large volume of plasmid DNA expressing vIL-10 (pCAGGS-vIL-10) solution was rapidly injected into the tail vein. pCAGGS solution was similarly injected into control rats (pCAGGS rats). We confirmed the presence of vector-derived vIL-10 mainly in the liver and observed high serum vIL-10 levels in pCAGGS-vIL-10-injected rats. Compared with the pCAGGS rats, the pCAGGS-vIL-10 rats showed significant therapeutic effects: reduced frequency of crescent formation, decrease in the number of total cells, macrophages, and CD4+ T cells in the glomeruli, decrease in urine protein, and attenuation of kidney dysfunction. Using quantitative real-time polymerase chain reaction, we also observed that this model was Th1-predominant in the glomeruli and that the ratio of the transcripts of CD4, interferon-γ, tumor necrosis factor-α, and monocyte chemotactic protein-1 to the transcripts of glucose-6-phosphate dehydrogenase in the glomeruli were all significantly lower in the pCAGGS-vIL-10 rats than in the pCAGGS rats. These results demonstrate that pCAGGS-vIL-10 gene transfer by hydrodynamics-based transfection suppresses crescentic glomerulonephritis.