Abstract
The curves-of-growth of water vapor were measured in the temperature range from 1000 K to 3000 K at a total pressure of 1 atm with a strip burner 6 m long. The fuel was gaseous hydrogen and oxygen. The statistical band model with exponential line intensity distribution was used to reduce the experimental data to yield spectral absorption coefficients (line strength/line spacing) and fine structure parameters (line width/line spacing), averaged over 25-cm−1 spectral intervals, in the region from 1 μ to 10 μ. Because of the fuels used, the foreign gas broadener was oxygen. An expression is given which permits the calculation of the spectral emission as a function of total pressure, partial pressure of water vapor, and foreign gases and path length. The range of total pressures is limited to the region in which collision broadening is predominant (~0.1 atm to several atm). The results are compared with previous results and with independent laboratory studies. The agreement is excellent.

This publication has 17 references indexed in Scilit: