A real-time matching system for large fingerprint databases
- 1 August 1996
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Pattern Analysis and Machine Intelligence
- Vol. 18 (8), 799-813
- https://doi.org/10.1109/34.531800
Abstract
With the current rapid growth in multimedia technology, there is an imminent need for efficient techniques to search and query large image databases. Because of their unique and peculiar needs, image databases cannot be treated in a similar fashion to other types of digital libraries. The contextual dependencies present in images, and the complex nature of two-dimensional image data make the representation issues more difficult for image databases. An invariant representation of an image is still an open research issue. For these reasons, it is difficult to find a universal content-based retrieval technique. Current approaches based on shape, texture, and color for indexing image databases have met with limited success. Further, these techniques have not been adequately tested in the presence of noise and distortions. A given application domain offers stronger constraints for improving the retrieval performance. Fingerprint databases are characterized by their large size as well as noisy and distorted query images. Distortions are very common in fingerprint images due to elasticity of the skin. In this paper, a method of indexing large fingerprint image databases is presented. The approach integrates a number of domain-specific high-level features such as pattern class and ridge density at higher levels of the search. At the lowest level, it incorporates elastic structural feature-based matching for indexing the database. With a multilevel indexing approach, we have been able to reduce the search space. The search engine has also been implemented on Splash 2-a field programmable gate array (FPGA)-based array processor to obtain near-ASIC level speed of matching. Our approach has been tested on a locally collected test data and on NIST-9, a large fingerprint database available in the public domain.Keywords
This publication has 43 references indexed in Scilit:
- CORE: a content-based retrieval engine for multimedia information systemsMultimedia Systems, 1995
- Identifying faces using multiple retrievalsIEEE MultiMedia, 1994
- Content based video indexing and retrievalIEEE MultiMedia, 1994
- Structural indexing: efficient 2D object recognitionIEEE Transactions on Pattern Analysis and Machine Intelligence, 1992
- Detection of singular points in fingerprint imagesPattern Recognition, 1992
- Massively parallel model matching: geometric hashing on the Connection MachineComputer, 1992
- Fingerprint image postprocessing: A combined statistical and structural approachPattern Recognition, 1991
- Color indexingInternational Journal of Computer Vision, 1991
- Registering Landsat images by point matchingIEEE Transactions on Geoscience and Remote Sensing, 1989
- An automated fingerprint identification systemPublished by National Institute of Standards and Technology (NIST) ,1982