Differential activation of ERKs to focal adhesions by PKC ε is required for PMA-induced adhesion and migration of human glioma cells

Abstract
Protein kinase C (PKC) is a family of serine/threonine kinases involved in the transduction of a variety of signals. There is increasing evidence to indicate that specific PKC isoforms are involved in the regulation of distinct cellular processes. In glioma cells, PKC α was found to be a critical regulator of proliferation and cell cycle progression, while PKC ε was found to regulate adhesion and migration. Herein, we report that specific PKC isoforms are able to differentially activate extracellular-signal regulated kinase (ERK) in distinct cellular locations: while PKC α induces the activation of nuclear ERK, PKC ε induces the activation of ERK at focal adhesions. Inhibition of the ERK pathway completely abolished the PKC-induced integrin-mediated adhesion and migration. Thus, we present the first evidence that PKC ε is able to activate ERK at focal adhesions to mediate glioma cell adhesion and motility, providing a molecular mechanism to explain the different biological functions of PKC α and ε in glioma cells.