Adiabatic frequency up-conversion of a powerful electromagnetic pulse producing gas ionization

Abstract
The theory of strong frequency upconversion of the powerful ionizing electromagnetic radiation in gases is presented based on the modified nonlinear geometrical optics approximation. The permanent spectrum upshift versus propagation path, exceeding considerably the initial frequency, is demonstrated without strong wave dissipation for the cases of impact and field-induced ionization in the high-intensity field range. Reflectionless propagation into the supercritical plasma and broad-band tuning of the laser radiation are emphasized as highly promising physical applications of the phenomenon described.