Abstract
Substituent-induced 1H chemical shifts (S.C.S.) for 19 4-substituted α-methyl- and α-t-butylstyrenes have been determined at infinite dilution in C6H12 and 13C S.C.S. have been determined for 0.4 M solutions in CCl4. S.C.S. are correlated with field and resonance substituent parameters and compared with charge densities determined by CNDO/2 MO calculations. The variation of S.C.S. with the dihedral angle, ρ, between phenyl and vinyl groups and the overall pattern of S.C.S. can be largely accounted for by a model of substituent effects based on field, resonance, and π polarization effects, with conjugative interactions varying as cos2ρ. Both 13C chemical shifts and charge densities indicate that the π polarization effect consists of two components: (1) a through-space polarization of the vinyl system by the polar C—X bond and (2) polarization of the entire conjugated styrene π electron system. However, significant deviations are noted for some of the 1H S.C.S. correlations. The CNDO/2 calculations indicate that these deviations are primarily due to electronic effects not predicted by the model outlined above. CNDO/2 calculations for related compounds provide a partial explanation by indicating that the magnitude of the field effect depends upon the nature of the molecular framework.