In vivo receptor binding, neurochemical and functional studies with the dopamine D-1 receptor antagonist SCH 23390
- 1 June 1988
- journal article
- research article
- Published by Springer Nature in Journal of Neural Transmission
- Vol. 72 (2), 83-97
- https://doi.org/10.1007/bf01250232
Abstract
A series of in vivo experiments were undertaken, relating functional (motor activity, body temperature), dopamine (DA) receptor binding and neurochemical (catecholamine synthesis and utilization, DA release) aspects of the pharmacology of SCH 23390 in the rat. The compound inhibited the locomotor hyperactivity, but not the hypothermia, induced by the potent DA stimulant DP-5,6-ADTN. Interstingly, SCH 23390 simultaneously failed to displace DP-5,6-ADTN from its binding sites in the rat striatum—used as a direct in vivo biochemical index of DA (D-2) receptor interaction. The spontaneous locomotion in non-pretreated rats was likewise inhibited by SCH 23390. The locomotor-suppressive action, but not the DP-5,6-ADTN-displacing capcity of the D-2 blocker haloperidol was significantly enhanced by SCH 23390, suggesting that motility can be suppressed by either enhanced D-1 or D-2 (postsynaptic) receptor blockade, but also that the D-1 and D-2 sites involved may be physically distinct. SCH 23390 only slightly altered in vivo neurochemical of DA synthesis, release and nerve-impulse flow, indicating that, while similar in suppressing dopaminergic behaviour, the D-1 antagonist is less effective than traditional neuroleptics as an activator of DA neuronal feedback mechanisms. The weak increases of DA synthesis and release nonetheless obtained were equal in magnitude (30–40%) in the limbic vs. striatal brain areas; also in this respect, SCH 23390 thus differs from classical neuroleptics, which generally display more marked effects in the striatum than in limbic tissue. No major changes in the in vivo indices of NA synthesis and utilization (or in 5-HT synthesis) were found after SCH 23390 administration, by and large supporting the DA receptor specificity of the compound. In summary, the studies demonstrated that SCH 23390 can offset and accentuate, respectively, behavioural consequences of D-2 receptor stimulation and blockade. Importantly, at the same time no direct interaction at the level of D-2 DA receptor sites in the striatum was detected. Only slight, D-2 antagonist-like, changes in neurochemical indices of dopaminergic activity were observed after D-1 receptor blockade by means of SCH 23390. With regard to DA agonist hypothermia, SCH 23390 was without effect per se, but (at a high dose) attenuated the action of the D-2 antagonist haloperidol. The observations may indicate that the complex interactions between central D-1 and D-2 receptor-controlled mechanisms that influence behaviour, neurochemistry, and possibly autonomic nervous expression, are not identical.Keywords
This publication has 38 references indexed in Scilit:
- The D-1 dopamine receptor antagonist SCH 23390 also interacts potently with brain serotonin (5-HT2) receptorsEuropean Journal of Pharmacology, 1986
- Excitation by dopamine D-2 receptor agonists, bromocriptine and LY 171555, in caudate nucleus neurons activated by nigral stimulationLife Sciences, 1986
- Dopamine D-2 receptor-mediated excitation of caudate nucleus neurons from the substantia nigraLife Sciences, 1985
- In vivo displacement by 3-PPP enantiomers of N,N-dipropyl-5,6-ADTN from dopamine receptor-binding sites in rat striatumJournal of Neural Transmission, 1985
- SCH 23390, a selective D1 dopamine receptor blocker, enhances the firing rate of nigral dopaminergic neurons but fails to activate striatal tyrosine hydroxylaseBrain Research, 1985
- Functional evidence for selective dopamine D-1 receptor blockade by SCH 23390Neuropharmacology, 1984
- Two dopamine receptors: Biochemistry, physiology and pharmacologyLife Sciences, 1984
- Pharmacological effects of a specific dopamine D-1 antagonist SCH 23390 in comparison with neurolepticsLife Sciences, 1984
- In vivo dopamine receptor binding studies with a non-radioactively labeled agonist, dipropyl-5, 6-ADTNLife Sciences, 1983
- Changes in body temperature after administration of amino acids, peptides, dopamine, neuroleptics and related agentsNeuroscience & Biobehavioral Reviews, 1979