Unforeseen Costs of Cutting Mosquito Surveillance Budgets

Abstract
A budget proposal to stop the U.S. Centers for Disease Control and Prevention (CDC) funding in surveillance and research for mosquito-borne diseases such as dengue and West Nile virus has the potential to leave the country ill-prepared to handle new emerging diseases and manage existing ones. In order to demonstrate the consequences of such a measure, if implemented, we evaluated the impact of delayed control responses to dengue epidemics (a likely scenario emerging from the proposed CDC budget cut) in an economically developed urban environment. We used a mathematical model to generate hypothetical scenarios of delayed response to a dengue introduction (a consequence of halted mosquito surveillance) in the City of Cairns, Queensland, Australia. We then coupled the results of such a model with mosquito surveillance and case management costs to estimate the cumulative costs of each response scenario. Our study shows that halting mosquito surveillance can increase the management costs of epidemics by up to an order of magnitude in comparison to a strategy with sustained surveillance and early case detection. Our analysis shows that the total costs of preparedness through surveillance are far lower than the ones needed to respond to the introduction of vector-borne pathogens, even without consideration of the cost in human lives and well-being. More specifically, our findings provide a science-based justification for the re-assessment of the current proposal to slash the budget of the CDC vector-borne diseases program, and emphasize the need for improved and sustainable systems for vector-borne disease surveillance. Surveillance has served as a basis for important public health responses to new threats, and as a source of invaluable information for health providers and policy makers. A budget proposal to stop the U.S. Centers for Disease Control and Prevention (CDC) funding in surveillance and research for mosquito-borne diseases such as dengue and West Nile virus has the potential to leave the country ill-prepared to handle new emerging diseases and manage existing ones. The present article uniquely integrates infectious disease models with economic analysis, taking advantage of a unique detailed dataset. By coupling a mathematical model with cost analysis we were able to evaluate the impact of delayed control responses to dengue fever, a mosquito-transmitted disease of global importance, in an economically developed urban environment. Our analysis clearly shows that the total costs of preparedness through surveillance are far lower than the ones that follow the introduction of vector-borne pathogens. Our findings will help provide a science-based justification for re-assessment of the current proposal to slash the budget of the CDC vector-borne diseases program. More generally our study demonstrates the power of rigorous analysis of carefully collected data for a balanced assessment of the economic implications of a public health program shift.