High-Efficiency CdTe and CIGS Thin-Film Solar Cells: Highlights and Challenges

Abstract
Thin-film photovoltaic (PV) modules of CdTe and Cu(ln,Ga)Se2 (CIGS) have the potential to reach cost-effective PV-generated electricity. These technologies have transitioned from the laboratory to the market place. Pilot production and first-time manufacturing are ramping up to higher capacity and enjoying a flood of venture-capital funding. CIGS solar cells and modules have achieved 19.5% and 13% efficiencies, respectively. Likewise, CdTe cells and modules have reached 16.5% and 10.2% efficiencies, respectively. Even higher efficiencies from the laboratory and from the manufacturing line are only a matter of time. Manufacturing-line yield continues to improve and is surpassing 85%. Long-term stability has been demonstrated for both technologies; however, some failures in the field have also been observed, emphasizing the critical need for understanding degradation mechanisms and packaging options. These two thin-film technologies have a common device/module structure: substrate, base electrode, absorber, junction layer, top electrode, patterning steps for monolithic integration, and encapsulation. The monolithic integration of thin-film solar cells can lead to significant manufacturing cost reduction compared to crystalline Si technology. The CdTe and CIGS modules share common structural elements. In principle, this commonality should lead to similar manufacturing cost per unit area, and thus, the module efficiency becomes the discriminating factor that determines the cost per watt. The long-term potential of the two technologies require R&D emphasis on science and engineering-based challenges to find solutions to achieve targeted cost-effective module performance, and in-field durability. Some of the challenges are common to both, e.g., in-situ process control and diagnostics, thinner absorber, understanding degradation mechanisms, protection from water vapor, and innovation in high-speed processing and module design. Other topics are specific to the technology, such as lower-cost and fast-deposition processes for CIGS, and improved back contact and voltage for CdTe devices

This publication has 6 references indexed in Scilit: