Abstract
Carbon nanofibers (sometimes known as carbon filaments) can be produced in a relative large scale by the catalytic decomposition of certain hydrocarbons on small metal particles. The diameter of the nanofibers is governed by that of the catalyst particles responsible for their growth. By careful manipulation of various parameters it is possible to generate carbon nanofibers in assorted conformations and at the same time also control the degree of their crystalline order. This paper is a review of the recent advances made in the development of these nanostructures, with emphasis both on the fundamental aspects surrounding the growth of the material and a discussion of the key factors which enable one to control their chemical and physical properties. Attention is also given to some of the possible applications of the nanostructures which center around the unique blend of properties exhibited by the material.