Synergistic activation by collagen and 15-hydroxy-9 alpha,11 alpha-peroxidoprosta-5,13-dienoic acid (PGH2) of phosphatidylinositol metabolism and arachidonic acid release in human platelets.
Open Access
- 1 December 1982
- journal article
- research article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 70 (6), 1216-1224
- https://doi.org/10.1172/jci110720
Abstract
Collagen stimulates the activation of phosphatidylinositol (PI)-specific phospholipase C (EC 3.1.4.10) in human platelets, as manifested by the disappearance of PI, the transient formation of diacylglycerol (DG), and release of myoinositol. Platelets exposed to collagen also form lysophosphatidylinositol (LPI). Maximum formation of DG occurs within 60 s of the addition of collagen and is in proportion to the concentration of collagen provided, up to 100 micrograms/2 x 10(9) platelets/ml. Hydrolysis of PI, formation of DG, and release of arachidonic acid are all inhibited approximately 68% by aspirin or indomethacin, both of which inhibit platelet cyclooxygenase. This inhibition is reversed by the product of cyclooxygenase activity, 15-hydroxy - 9 alpha,11 alpha - peroxidoprosta - 5,13 - dienoic acid (PGH2), or by the PGH2 analogue and agonist, U-46619. The counteracting effects of either PGH2 or the PGH2 analogue can be blocked, in turn, by a PGH2 antagonist, U-51605. Neither PGH2 nor its stable analogue is, by itself, an efficient stimulus for PI breakdown to DG and LPI in platelets. However, in conjunction with collagen, these agents synergistically promote the net breakdown of PI and the release of arachidonic acid in aspirin-treated platelets. Our findings thereby imply that PGH2 has an important role in regulating both the release of its precursor, arachidonic acid, and the metabolism of PI induced by collagen. Dibutyryl cyclic AMP or prostaglandin D2 (PGD2), a prostaglandin that elevates concentrations of cAMP in platelets by stimulating adenylate cyclase, inhibits the hydrolysis of PI induced by collagen by 70%. The activation of PI metabolism by collagen appears to be inhibited by cAMP independently of any effects of this inhibitor on the formation of PGH2.This publication has 30 references indexed in Scilit:
- Phospholipid Metabolism in Stimulated Human PlateletsJournal of Clinical Investigation, 1980
- Characterization and properties of a phosphatidylinositol phosphodiesterase (phospholipase C) from platelet cytosolFEBS Letters, 1979
- The activation by Ca2+ of platelet phospholipase A2Biochimica et Biophysica Acta (BBA) - General Subjects, 1978
- Characterization of the Human Platelet α-Adrenergic ReceptorJournal of Clinical Investigation, 1978
- Interralation of prostaglandin endoperoxide (prostaglandin G2) and cyclic 3′,5′-adenosine monophosphate in human blood plateletsBiochimica et Biophysica Acta (BBA) - General Subjects, 1977
- Prostaglandins H1 and H2. Convenient biochemical synthesis and isolation. Further biological and spectroscopic characterizationProstaglandins, 1977
- Cyclic adenosine 3',5'-monophosphate inhibits the availability of arachidonate to prostaglandin synthetase in human platelet suspensions.Journal of Clinical Investigation, 1977
- Isolation of membranes from normal and thrombintreated gel-filtered platelets using a lectin markerBiochimica et Biophysica Acta (BBA) - Biomembranes, 1976
- Inositol phospholipids and cell surface receptor functionBiochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1975
- A highly sensitive adenylate cyclase assayAnalytical Biochemistry, 1974