Abstract
The interactions between DNA-specific fluorescence stains complexed with mitotic Chinese hamster cells were studied by spectrofluorometric and flow fluorometric techniques. The degree of binding interactions and of energy transfer between stains was determined from the intensities and shapes of fluorescence emission spectra of cells complexed with pairs of stains. The stain pairs Hoechst 33258-chromomycin A3, Hoechst 33258-ethidium bromide, and chromomycin A3-ethidium bromide exhibited efficient energy transfer from the short wavelength absorber (donor) to the long wavelength absorber (acceptor), and little competitive or cooperative binding of stains. The stain pair quinacrine-ethidium bromide exhibited both energy transfer and competitive binding. None of the stain pairs showed evidence of strong electronic interactions between stains. The magnitude of energy transfer interactions was used to estimate the quantity and distribution of the stains molecules complexed to mitotic cells. The results indicate a fairly even distribution of each of these stains along the DNA of intracellular mitotic chromosomes.