Global asymptotic stability of a general class of recurrent neural networks with time-varying delays
Top Cited Papers
- 19 February 2003
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Circuits and Systems I: Regular Papers
- Vol. 50 (1), 34-44
- https://doi.org/10.1109/tcsi.2002.807494
Abstract
In this paper, the existence and uniqueness of the equilibrium point and its global asymptotic stability are discussed for a general class of recurrent neural networks with time-varying delays and Lipschitz continuous activation functions. The neural network model considered includes the delayed Hopfield neural networks, bidirectional associative memory networks, and delayed cellular neural networks as its special cases. Several new sufficient conditions for ascertaining the existence, uniqueness, and global asymptotic stability of the equilibrium point of such recurrent neural networks are obtained by using the theory of topological degree and properties of nonsingular M-matrix, and constructing suitable Lyapunov functionals. The new criteria do not require the activation functions to be differentiable, bounded or monotone nondecreasing and the connection weight matrices to be symmetric. Some stability results from previous works are extended and improved. Two illustrative examples are given to demonstrate the effectiveness of the obtained results.Keywords
This publication has 35 references indexed in Scilit:
- An additive diagonal-stability condition for absolute exponential stability of a general class of neural networksIEEE Transactions on Circuits and Systems I: Regular Papers, 2001
- Absolute exponential stability of neural networks with a general class of activation functionsIEEE Transactions on Circuits and Systems I: Regular Papers, 2000
- New sufficient conditions for absolute stability of neural networksIEEE Transactions on Circuits and Systems I: Regular Papers, 1998
- A comment on "Comments on 'Necessary and sufficient condition for absolute stability of neural networks'"IEEE Transactions on Circuits and Systems I: Regular Papers, 1998
- A comment on "Comments on 'Necessary and sufficient condition for absolute stability of neural networks'"IEEE Transactions on Circuits and Systems I: Regular Papers, 1998
- Comments on "Necessary and sufficient condition for absolute stability of neural networks"IEEE Transactions on Circuits and Systems I: Regular Papers, 1995
- Necessary and sufficient condition for absolute stability of neural networksIEEE Transactions on Circuits and Systems I: Regular Papers, 1994
- A synthesis procedure for Hopfield's continuous-time associative memoryIEEE Transactions on Circuits and Systems, 1990
- Bidirectional associative memoriesIEEE Transactions on Systems, Man, and Cybernetics, 1988
- Theory of Functional Differential EquationsPublished by Springer Nature ,1977