Abstract
Low amounts of serum response factor (SRF) activate transcription in vitro from a fos promoter construct containing an SRF binding site. Using this human HeLa cell-derived in vitro transcription system, we have found that high amounts of SRF inhibited, or 'squelched', transcription from this construct. Transcription from several other promoters activated by different gene-specific factors, including CREB and the acidic activator VP16, was also inhibited by high amounts of SRF. Basal transcription, from TATA-only promoters, however, was not inhibited. These results suggest that SRF binds to a common factor(s) (termed coactivator) required for activated transcription by a diverse group of transcriptional activators. Inhibition of transcription by SRF could be blocked by a double stranded oligonucleotide containing an SRF binding site. Mutations in SRF which abolished its DNA binding activity also reduced its ability to inhibit transcription. In addition, a C-terminal truncation of SRF which reduced its ability to activate transcription also reduced SRF's ability to inhibit transcription. These results suggest that activation and inhibition of transcription may be mediated by SRF binding to the same factor and that SRF can only bind to this factor when SRF is bound to plasmid DNA.