Interactions of aromatic residues of proteins with nucleic acids. Fluorescence studies of the binding of oligopeptides containing tryptophan and tyrosine residues to polynucleotides

Abstract
The binding of oligopeptides of general structure Lys-X-Lys (where X is an aromatic residue) to several polynucleotides has been studied by fluorescence spectroscopy. Two types of complexes are formed, both involving electrostatic interactions between lysyl residues and phosphate groups as shown by the ionic strength and pH dependence of binding. The fluorescence quantum yield of the first complex is identical with that of the free peptide. The other complex involves a stacking of the nucleic acid bases with the aromatic amino acid whose fluorescence is quenched. Fluorescence data have been quantitatively analyzed according to a model involving these two types of complexes. Association constants and the size of binding sites have been determined. Stacking interactions are favored in single-stranded polynucleotides as compared to double-stranded ones. A short oligopeptide such as Lys-X-Lys is thus able to distinguish between single-stranded and double-stranded nucleic acids. Fluorescence results are compared to those obtained by proton magnetic resonance and circular dichroism.