Theory of Multicomponent, Multiphase Displacement in Porous Media

Abstract
The basis of a general theory of multicomponent, multiphase displacement in porous media is presented. The theory is applicable to an arbitrary number of phases, an arbitrary number of components partitioning between the phases, and variable initial and injection conditions. Only the effects of propagation are considered; phase equilibria and dependence of fractional flows on phase compositions and saturations are required as input, but any type of equilibrium and flow behavior can be accommodated. The principal simplifying assumptions are the restriction to one dimension, local phase equilibria, volume additivity on partitioning, idealized fluid dynamic behavior, and absence of temperature and pressure effects. The theory is an extension of that of multicomponent chromatography and has taken from it the concept of "coherence" and, for practical application, the tools of composition routes and distance/time diagrams. The application of the theory to a surfactant flood is illustrated in a companion paper.1