Genome-wide association study reveals genetic risk underlying Parkinson's disease

Top Cited Papers
Open Access
Abstract
Andrew Singleton, Thomas Gasser and colleagues report results of a genome-wide association study of Parkinson's disease among individuals of European ancestry. They find genome-wide significant associations at two loci, SNCA and MAPT, and provide supporting evidence for a new risk locus on 1q32. We performed a genome-wide association study (GWAS) in 1,713 individuals of European ancestry with Parkinson's disease (PD) and 3,978 controls. After replication in 3,361 cases and 4,573 controls, we observed two strong association signals, one in the gene encoding α-synuclein (SNCA; rs2736990, OR = 1.23, P = 2.24 × 10−16) and another at the MAPT locus (rs393152, OR = 0.77, P = 1.95 × 10−16). We exchanged data with colleagues performing a GWAS in Japanese PD cases. Association to PD at SNCA was replicated in the Japanese GWAS1, confirming this as a major risk locus across populations. We replicated the effect of a new locus detected in the Japanese cohort (PARK16, rs823128, OR = 0.66, P = 7.29 × 10−8) and provide supporting evidence that common variation around LRRK2 modulates risk for PD (rs1491923, OR = 1.14, P = 1.55 × 10−5). These data demonstrate an unequivocal role for common genetic variants in the etiology of typical PD and suggest population-specific genetic heterogeneity in this disease.