Mutations in the cyp51A gene and susceptibility to itraconazole in Aspergillus fumigatus serially isolated from a patient with lung aspergilloma
Open Access
- 1 January 2005
- journal article
- case report
- Published by Oxford University Press (OUP) in Journal of Antimicrobial Chemotherapy
- Vol. 55 (1), 31-37
- https://doi.org/10.1093/jac/dkh507
Abstract
Objectives: To monitor changes in itraconazole susceptibility of isolates from a patient undergoing treatment for pulmonary Aspergillus infection and relate these changes to genotypic/phenotypic alterations. Methods: Six Aspergillus fumigatus isolates were serially recovered from the patient. Itraconazole MICs were determined by Etest and NCCLS methodology. Growth characteristics and phenotype were monitored. Molecular analysis included random amplified polymorphic DNA (RAPD) assay and sequencing of the cyp51A gene. Results: The MIC of itraconazole against the first isolate before treatment was 0.25 mg/L; the MIC against the second isolate, recovered after 6 months of itraconazole therapy, was >16 mg/L; and that against the third isolate, obtained 2 months after discontinuation of the therapy, was 0.5 mg/L. The MIC against the last three isolates, acquired after restoration of itraconazole therapy for 4–7 months, was >16 mg/L. The six isolates shared identical band patterns of RAPD assay using four primers and the same sequence in intertranscribed spacers (ITS). Therefore, the six isolates were likely to be the same strain of A. fumigatus, and mutations involving itraconazole resistance possibly occurred in these isolates after prolonged itraconazole therapy. Sequencing of the cyp51A gene in the coding region revealed a mutation of M220I in cytochrome P450 sterol 14-α-demethylase in the second resistant isolate and a mutation of G54R in the last three resistant isolates. Expression changes of some pump genes, such as MDR3, may also, in part, be related to the resistance to itraconazole. Conclusions: We conclude that resistance of A. fumigatus to itraconazole occurred in a patient treated with the drug, and the resistance may result from mutations in the cyp51A gene—the gene encoding the target enzyme for itraconazole.Keywords
This publication has 40 references indexed in Scilit:
- A Point Mutation in the 14α-Sterol Demethylase Gene cyp51A Contributes to Itraconazole Resistance in Aspergillus fumigatusAntimicrobial Agents and Chemotherapy, 2003
- Acquired itraconazole resistance in Aspergillus fumigatusJournal of Antimicrobial Chemotherapy, 2001
- In-vivo itraconazole resistance of Aspergillus fumigatus in systemic murine aspergillosisJournal of Medical Microbiology, 1999
- In-vitro susceptibility of Aspergillus spp. isolates to amphotericin B and itraconazoleJournal of Antimicrobial Chemotherapy, 1999
- Reduced susceptibility in laboratory-selected mutants of Aspergillus fumigatus to itraconazole due to decreased intracellular accumulation of the antifungal agentInternational Journal of Antimicrobial Agents, 1999
- Aspergillus fumigatusand AspergillosisClinical Microbiology Reviews, 1999
- Invasive AspergillosisClinical Infectious Diseases, 1998
- Itraconazole resistance in Aspergillus fumigatusAntimicrobial Agents and Chemotherapy, 1997
- Azole drug resistance in yeastsJournal of Antimicrobial Chemotherapy, 1995
- Human Mycoses: Drugs and Targets for Emerging PathogensScience, 1994