Abstract
Increasing levels of microprocessor power dissipation call for new approaches at the architectural level that save energy by better matching of on-chip resources to application requirements. Selective cache ways provides the ability to disable a subset of the ways in a set associative cache during periods of modest cache activity, while the full cache may remain operational for more cache-intensive periods. Because this approach leverages the subarray partitioning that is already present for performance reasons, only minor changes to a conventional cache are required and therefore, full-speed cache operation can be maintained. Furthermore, the tradeoff between performance and energy is flexible, and can be dynamically tailored to meet changing application and machine environmental conditions. We show that trading off a small performance degradation for energy savings can produce a significant reduction in cache energy dissipation using this approach.

This publication has 15 references indexed in Scilit: