The Theory of Free Electron Lasers

Abstract
A general analysis is presented of free electron lasers in which a static periodic magnetic pump field is scattered from a relativistic electron beam. The steady state formulation of the problem is fully relativistic and contains beam thermal effects. Growth rates associated with the radiation field, efficiencies, and saturated field amplitudes are derived for various modes of operation. Effects of space charge on the scattering process are included and shown to play a dominant role in certain situations. Scaling laws for the growth rates and efficiencies at a fixed radiation frequency as a function of the magnetic pump amplitude are obtained. The shear in beam axial velocity due to self fields is discussed and various methods of reducing it are suggested. Finally, a detailed illustration of a far infrared (lambda = 2mu m) two-stage free electron laser using a 3 MeV electron beam and a 2 cm wavelength magnetic pump field is presented.