Metabolic dependence of red cell deformability

Abstract
The contribution of the metabolic state of human erythrocytes to maintenance of cellular deformability was studied during and after in vitro incubation in serum for periods up to 28 hr. An initial loss of membrane deformability became apparent between 4 and 6 hr when cellular adenosine triphosphate (ATP) levels were approximately 70% of initial values. Membrane deformability then remained stable between 6 and 10 hr. After 10 hr, when cellular ATP had decreased to < 15% of initial values, progressive parallel changes occurred in red cell calcium which increased 400% by 24 hr and in the viscosity of red cell suspensions which had risen 500-750% at 24 hr. A further progressive decrease in membrane deformability also occurred and was reflected by a 1000% increase in negative pressure required to deform the membrane. Red cell filterability decreased to zero as the disc-sphere shape transformation ensued. These changes were accompanied by an increase in ghost residual hemoglobin and nonhemoglobin protein. Regeneration of ATP in depleted cells by incubation with adenosine produced significant reversal of these changes, even in the presence of ouabain. Introduction of calcium into reconstituted ghosts prepared from fresh red cells mimicked the depleted state, and introduction of ATP, ethylenediamine tetraacetate (EDTA), and magnesium into depleted cells mimicked the adenosine effects in intact depleted cells. ATP added externally to 24-hr depleted cells was without effect. Simultaneous introduction of EDTA, ATP, or magnesium along with calcium into reconstituted ghosts prevented the marked decrease in deformability produced by calcium alone. Incorporation of adenosine diphosphate (ADP), nicotinamide adenine dinucleotide (NAD), NAD phosphate (NADP), NADP, reduced form (NADPH), glutatione, reduced form (GSH), inosine triphosphate (ITP), guanosine triphosphate (GTP), and uridine triphosphate (UTP) was without effect. These data suggest that a major role of ATP in maintenance of red cell viability relates to preservation of red cell membrane deformability. It is proposed that the changes seen in the physical properties of ATP-depleted erythrocytes represent ATP-calcium-dependent sol-gel changes occurring at the interface between the membrane and the cell interior, and that the sol-gel balance determines membrane deformability.