Linkage of butterfly mate preference and wing color preference cue at the genomic location ofwingless

Abstract
Sexual isolation is a critical form of reproductive isolation in the early stages of animal speciation, yet little is known about the genetic basis of divergent mate preferences and preference cues in young species. Heliconius butterflies, well known for their diversity of wing color patterns, mate assortatively as a result of divergence in male preference for wing patterns. Here we show that the specific cue used by Heliconius cydno and Heliconius pachinus males to recognize conspecific females is the color of patches on the wings. In addition, male mate preference segregates with forewing color in hybrids, indicating a genetic association between the loci responsible for preference and preference cue. Quantitative trait locus mapping places a preference locus coincident with the locus that determines forewing color, which itself is perfectly linked to the wing patterning candidate gene, wingless. Furthermore, yellow-colored males of the polymorphic race H. cydno alithea prefer to court yellow females, indicating that wing color and color preference are controlled by loci that are located in an inversion or are pleiotropic effects of a single locus. Tight genetic associations between preference and preference cue, although rare, make divergence and speciation particularly likely because the effects of natural and sexual selection on one trait are transferred to the other, leading to the coordinated evolution of mate recognition. This effect of linkage on divergence is especially important in Heliconius because differentiation of wing color patterns in the genus has been driven and maintained by natural selection for Müllerian mimicry.