The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells
Open Access
- 15 April 1999
- journal article
- research article
- Published by Springer Nature in The EMBO Journal
- Vol. 18 (8), 2184-2195
- https://doi.org/10.1093/emboj/18.8.2184
Abstract
We have followed the behaviour of a cyclin B–green fluorescent protein (GFP) fusion protein in living Drosophila embryos in order to study how the localization and destruction of cyclin B is regulated in space and time. We show that the fusion protein accumulates at centrosomes in interphase, in the nucleus in prophase, on the mitotic spindle in prometaphase and on the microtubules that overlap in the middle of the spindle in metaphase. In cellularized embryos, toward the end of metaphase, the spindle‐associated cyclin B–GFP disappears from the spindle in a wave that starts at the spindle poles and spreads to the spindle equator; when the cyclin B–GFP on the spindle is almost undetectable, the chromosomes enter anaphase, and any remaining cytoplasmic cyclin B–GFP then disappears over the next few minutes. The endogenous cyclin B protein appears to behave in a similar manner. These findings suggest that the inactivation of cyclin B is regulated spatially in Drosophila cells. We show that the anaphase‐promoting complex/cyclosome (APC/C) specifically interacts with microtubules in embryo extracts, but it is not confined to the spindle in mitosis, suggesting that the spatially regulated disappearance of cyclin B may reflect the spatially regulated activation of the APC/C.Keywords
This publication has 59 references indexed in Scilit:
- Mammalian p55CDC Mediates Association of the Spindle Checkpoint Protein Mad2 with the Cyclosome/Anaphase-promoting Complex, and is Involved in Regulating Anaphase Onset and Late Mitotic EventsThe Journal of cell biology, 1998
- The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiaeThe EMBO Journal, 1998
- APC-Mediated Proteolysis of Ase1 and the Morphogenesis of the Mitotic SpindleScience, 1997
- Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p.Genes & Development, 1996
- How Proteolysis Drives the Cell CycleScience, 1996
- CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transitionCell, 1995
- Cyclin B is associated with centrosomes in Drosophila mitotic cellsBiology of the Cell, 1992
- Distinct nuclear and spindle pole body populations of cyclin–cdc2 in fission yeastNature, 1990
- Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proceedings of the National Academy of Sciences, 1979
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970