Sequence of a Specifically Encapsidated RNA Fragment Originating from the Tobacco‐Mosaic‐Virus Coat‐Protein Cistron

Abstract
When 25-S tobacco mosaic virus (TMV) protein aggregate and TMV RNA, which has been partially digested by T1 RNase, are mixed under conditions suitable for reconstitution, only a few RNA fragments are encapsidated. These fragments were isolated and purified by polyacrylamide gel electrophoresis. The sequence of the three main fragments, the longest of which (fragment 1) was estimated to contain 103 nucleotides, has been determined. The two smaller fragments are portions of the longer chain produced by an additional specific scission. Because of the great affinity of 25-S TMV protein for this nucleotide sequence, it will be referred to as the "specifically encapsidated RNA fragment". The occurrence of a "hidden break" in the sequence has been demonstrated: fragment 1, purified by electrophoresis on a polyacrylamide gel without 8 M urea, gives rise upon further electroporesis in the presence of urea to two new bands corresponding to the two halves of the molecule. A stable hair-pin secondary structure has been derived from the base sequence which can account for the specificity of action of the enzyme. Because of its properties, we have suggested elsewhere that the sequence of fragment 1 might correspond to the disk recognition site for reconstitution, which is known to be located at the 5' end of the intact RNA. But experiments with TMV RNA whose 5'-OH end has been radioactively phosphorylated with polynucleotide kinase show that this is not the case. Analysis of the amino acid coding capacity of the fragment has instead revealed that fragment 1 is a portion of the TMV coat protein cistron.