The protein kinase DAI, the double-stranded RNA-activated inhibitor of translation, is an essential component of the interferon-induced cellular antiviral response. The enzyme is regulated by the binding of activator and inhibitor RNAs. We synthesized DAI in vitro and located its RNA-binding domain within the amino-terminal 171 residues. This domain contains two copies of an RNA-binding motif characterized by a high density of basic amino acids, by the presence of conserved residues, and by a probable alpha-helical structure. Deletion of either of the two motifs prevents the binding of dsRNA, but their relative positions can be exchanged, suggesting that they cooperate to interact with dsRNA. Clustered point mutations within the RNA-binding motifs and duplications of the individual motifs indicate that the first copy of the motif plays the more important role. Mutations that impair binding have similar effects on the binding of double-stranded RNAs of various lengths and of adenovirus VA RNAI, implying that discrimination between activator and inhibitory RNAs takes place subsequent to RNA binding.