Canine renal receptors for parathyroid hormone. Down-regulation in vivo by exogenous parathyroid hormone.
Open Access
- 1 August 1983
- journal article
- research article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 72 (2), 411-421
- https://doi.org/10.1172/jci110989
Abstract
Chronic elevation of circulating parathyroid hormone (PTH) is associated with decreased target cell responsiveness to PTH. To study the subcellular mechanism of this phenomenon we evaluated PTH receptors and adenylate cyclase activity in renal cortical membranes prepared before and after infusion of bovine parathyroid gland extract (PTE) into thyroparathyroidectomized dogs. PTE infusion resulted in a 53% decrease in the number of high-affinity receptors (P less than 0.01) associated with a 66% decrease in PTH-stimulated adenylate cyclase (P less than 0.01) relative to paired base-line values. Both the equilibrium constant of dissociation (KD) for PTH binding and the concentration of PTH that caused half-maximal stimulation of adenylate cyclase were in the range of 1 to 4 nM, and were unaffected by the PTE infusion. Responsiveness of the renal adenylate cyclase to sodium fluoride was 88% of base-line values. Infusion of the PTE vehicle alone did not affect PTH receptor number or blunt the adenylate cyclase response to PTH. Pretreatment of the membranes made after PTE infusion with guanosine triphosphate (GTP), which is known to produce dissociation of receptor-bound PTH, failed to restore either receptor number or PTH-stimulated adenylate cyclase. This finding was not due to a lack of efficacy of the GTP pretreatment, because identical GTP pretreatment restored PTH binding to base-line values in membranes partially occupied by incubation with PTH in vitro. Thus, simple residual occupancy of PTH receptors by the infused hormone did not appear to account for the observed receptor loss. The results of this study suggest that target cell resistance to PTH in patients with hyperparathyroidism might occur, at least in part, due to down-regulation of PTH receptors by circulating hormone.This publication has 31 references indexed in Scilit:
- Maintenance of a calcemic response to parathyroid hormone in D-deficient rats by the prevention of severe hyperparathyroidismCalcified Tissue International, 1977
- Immunoheterogeneity of Parathyroid Hormone in Venous Effluent Serum from Hyperfunctioning Parathyroid GlandsJournal of Clinical Investigation, 1977
- Reversible Resistance to the Renal Action of Parathyroid Hormone in ManClinical Science, 1976
- Renal adenylate cyclase and the interrelationship between parathyroid hormone and vitamin D in the regulation of urinary phosphate and adenosine cyclic 3',5'-monophosphate excretion.Journal of Clinical Investigation, 1976
- Cyclic nucleotide metabolism in compensatory renal hypertrophy and neonatal kidney growth.Proceedings of the National Academy of Sciences, 1976
- Distribution of parathyroid hormone-stimulated adenylate cyclase in plasma membranes of cells of the kidney cortexThe Journal of Membrane Biology, 1975
- A highly sensitive adenylate cyclase assayAnalytical Biochemistry, 1974
- Excretion of Cyclic 3', 5'-Adenosine Monophosphate in Renal Insufficiency and Primary Hyperparathyroidism after Stimulation with Parathyroid HormoneHormone and Metabolic Research, 1974
- Characterization of plasma membrane proteins in mammalian kidney. I. Preparation of a membrane fraction and separation of the protein.1969
- CALCIUM AND MAGNESIUM CONTENT OF SKELETAL MUSCLE BRAIN AND CEREBROSPINAL FLUID AS DETERMINED BY ATOMIC ABSORPTION FLAME PHOTOMETRY1968