Heartbeat detection from a hydraulic bed sensor using a clustering approach

Abstract
Encouraged by previous performance of a hydraulic bed sensor, this work presents a new hydraulic transducer configuration which improves the system's ability to capture a heartbeat signal from four subjects with different body weight and height, gender, age and cardiac history. It also proposes a new approach for detecting the occurrence of heartbeats from ballistocardiogram (BCG) signals through the use of the k-means clustering algorithm, based on finding the location of the J-peaks. Preliminary testing showed that the new transducer arrangement was able to capture the occurrence of heartbeats for all the participants, and the clustering approach achieved correct heartbeat detection ranging from 98.6 to 100% for three of them. Some considerations are discussed regarding adjustments that can be done in order to increase the correct detection of heartbeats for the participant whose percentage of correct detection ranged from 71.0 to 92.5%.

This publication has 15 references indexed in Scilit: