A magnesium-induced conformational transition in the loop of a DNA analog of the yeast tRNAPhe anticodon is dependent on RNA-like modifications of the bases of the stem
Two single-stranded DNA heptadecamers corresponding to the yeast tRNA(Phe) anticodon stem-loop were synthesized, and the solution structures of the oligonucleotides, d(CCAGACTGAAGATCTGG) and d(CCAGACTGAAGAU-m5C-UGG), were investigated using spectroscopic methods. The second, or modified, base sequence differs from that of DNA by RNA-like modifications at three positions; dT residues were replaced at positions 13 and 15 with dU, and the dC at position 14 with d(m5C), corresponding to positions where these nucleosides occur in tRNA(Phe). Both oligonucleotides form intramolecular structures at pH 7 in the absence of Mg2+ and undergo monophasic thermal denaturation transitions (Tm = 47 degrees C). However, in the presence of 10 mM Mg2+, the modified DNa adopted a structure that exhibited a biphasic "melting" transition (Tm values of 23 and 52 degrees C) whereas the unmodified DNA structure exhibited a monophasic denaturation (Tm = 52 degrees C). The low-temperature, Mg(2+)-dependent structural transition of the modified DNA was also detected using circular dichroism (CD) spectroscopy. No such transition was exhibited by the unmodified DNA. This transition, unique to the modified DNA, was dependent on divalent cations and occurred most efficiently with Mg2+; however, Ca2+ also stabilized the alternative conformation at low temperature. NMR studies showed that the predominant structure of the modified DNA in sodium phosphate (pH 7) buffer in the absence of Mg2+ was a hairpin containing a 7-nucleotide loop and a stem composed of 3 stable base pairs. In the Mg(2+)-stabilized conformation, the loop became a two-base turn due to the formation of two additional base pairs across the loop.(ABSTRACT TRUNCATED AT 250 WORDS)