Abstract
Power spectral density measurements were made of the water surface displacement in a wind-generated wave train in the Stanford wind, water-wave research facility. Growth rates of different components were determined from the measured spectra. The resulting values were compared with those predicted by the viscous Reynolds stress mechanism of energy transfer from wind to wave which was proposed by Miles. Where the growth was exponential the theory could be made to predict growth rates successfully at wave frequencies less than 3·5 c/s. At higher frequencies the theory predicted values an order of magnitude larger than those measured. Limited regions of linear growth were found at the lowest wind speed for components with frequencies less than 2·5 c/s. The scatter in the data did not permit a quantitative comparison with theory to be made for this range.