Improvement in the quantification of myocardial perfusion using an automatic spline‐based registration algorithm
Open Access
- 21 July 2003
- journal article
- research article
- Published by Wiley in Journal of Magnetic Resonance Imaging
- Vol. 18 (2), 160-168
- https://doi.org/10.1002/jmri.10351
Abstract
Purpose: To improve the quantification of myocardial perfusion by registering the time series of magnetic resonance (MR) images with injection of gadolinium. Materials and Methods: Eight patients underwent MR scans to perform myocardial perfusion exam. Two short axis views of the left ventricle (LV) were acquired in free breathing. Two masks for performing the spatial registration of the images were evaluated. The registration was based on pixel intensity in a multi‐resolution scheme. The efficiency of this correction was evaluated by calculating geometric residual displacement of the LV and by fitting the data to a compartment model fit with two parameters: K1, the blood‐to‐myocardium transfer coefficient, and Vd, the distribution volume of the contrast media. Results: The registration stage allowed a decrease in the observed motion of the LV from more than 1.98 ± 0.68 mm to less than 0.56 ± 0.18 mm (mean ± SD). Variability obtained in the perfusion analysis decreased from 46 ± 103% to 5± 4% for K1 parameter and from 18 ± 21% to 5 ± 5% for Vd parameter. Conclusion: As with manual correction, this automatic motion correction leads to accurate perfusion parameters in dynamic cardiac MR imaging after contrast agent injection. This automatic stage requires placing only one mask over one frame of the perfusion study instead of manually shifting each image to fit a reference image of the perfusion study. J. Magn. Reson. Imaging 2003;18:160–168.Keywords
Funding Information
- Swiss National Science Foundation (SNF 31-57020.99)
- Geneva University Hospital
This publication has 16 references indexed in Scilit:
- Automated registration of dynamic MR images for the quantification of myocardial perfusionJournal of Magnetic Resonance Imaging, 2001
- Interpolation revisited [medical images application]IEEE Transactions on Medical Imaging, 2000
- Quantification of myocardial perfusion with FAST sequence and Gd bolus in patients with normal cardiac functionJournal of Magnetic Resonance Imaging, 1999
- Splines: a perfect fit for signal and image processingIEEE Signal Processing Magazine, 1999
- A pyramid approach to subpixel registration based on intensityIEEE Transactions on Image Processing, 1998
- MRI quantitative myocardial perfusion with compartmental analysis: A rest and stress studyMagnetic Resonance in Medicine, 1997
- Myocardial perfusion modeling using MRIMagnetic Resonance in Medicine, 1996
- Simultaneous temporal resolution of cardiac and respiratory motion in MR imaging.Radiology, 1995
- Ultrasound quantitation of respiratory organ motion in the upper abdomenThe British Journal of Radiology, 1994
- Semiautomated ROI Analysis in Dynamic MR Studies. Part IJournal of Computer Assisted Tomography, 1991