Renormalization theory for eddy diffusivity in turbulent transport

Abstract
We examine the derivation of eddy-diffusivity equations for transport of passive scalars in a turbulent velocity field. Our main contention is that, in the long-time–large-distance limit, the eddy-diffusivity equations can take very different forms according to the statistical properties of the subgrid velocity, and that these equations depend very sensitively on the interplay between spatial and temporal velocity fluctuations. Such crossovers can be represented in a ‘‘phase diagram’’ involving two relevant statistical parameters. Strikingly, the Kolmogorov-Obukhov statistical theory is shown to lie on a phase-transition boundary.

This publication has 13 references indexed in Scilit: